Crystal Structure of Potassium Amidoberyllate

By L. GUEMAS-BRISSEAU

(U.E.R. de Chimie, Chimie Minérale A, Universite de Nantes, Cedex 44037 B.P. 1044, Nantes, France)

and M. G. B. DREW* and J. E. GOULTER

(Department of Chemistry, The University, Whiteknights, Reading RG6 2AD)

Summary The $[Be(NH_{2})_3]^-$ anion is monomeric with approximate D_{3h} symmetry; the mean Be-N distance is 1.592 Å.

POTASSIUM AMIDOBERYLLATE was prepared by the reaction of metallic beryllium with a solution of potassium in liquid ammonia.¹ An i.r. study indicated the presence of (NH_2) groups,^{2,3} and two structures were considered possible; either polymeric tetrahedral beryllium (as in the structure of $CsBeF_3)^4$ or monomeric trigonal beryllium. An X-ray study has resolved this ambiguity.

Crystal data: H_6N_3BeK , $M = 96\cdot19$, orthorhombic, $a = 12\cdot880(9)$, $b = 11\cdot213(9)$, $c = 13\cdot195(10)$ Å, $U = 1905\cdot5$ Å³, $D_c = 1\cdot34$, $D_m = 1\cdot33$, Z = 16, space group *Pbca*. The intensities of 881 independent reflections above background $(2\theta < 45^{\circ})$ were measured on an G.E. XRD 5 manual diffractometer by the stationary-crystal stationary-counter technique. The structure was solved by Patterson and Fourier methods and refined (K, N, Be anisotropic, H isotropic) to R 0.040. The asymmetric unit contains two potassium cations and two $[Be(NH_2)_3]^$ anions. The anions are monomeric and have approximate D_{3h} symmetry with the amide groups acting as terminal ligands. The deviations from D_{3h} symmetry are small but significant; e.g. the N-Be-N angles range between 118.3(5) and 121.6(5)° and the average deviation of a hydrogen atom from a N,N,N plane is 0.21(5) Å, but such deviations follow no distinct pattern and can be ascribed to intermolecular packing, there being several $H \cdots H$ contacts of ca.

FIGURE. Mean dimensions in the $[Be(NH_2)_3]^-$ anion.

¹ N. Bergston, J. Amer. Soc., 1928, 50, 632.
² P. Bouclier, These Bordeaux, No. 224, 1969.
³ J. Rouxel and L. Brisseau, Bull. Soc. chim. France, 1971, 6, 2001.
⁴ H. Steinfink and C. D. Brunton, Acta Cryst., 1968, B24, 807.
⁵ H. Jacobs, Z. anorg. Chem., 1971, 382, 97.
⁶ A. H. Clark and A. Haaland, Chem. Comm., 1969, 912.

⁷ J. L. Atwood and G. D. Stucky, J. Amer. Chem. Soc., 1971, 97, 382.

¹ F. W. Bergston, J. Amer. Chem. Soc., 1928, 50, 652.

2.50 Å. The mean dimensions are shown in the Figure. Those concerning the NH_2 groups are in good agreement with those found in $Mg(NH_2)_2$.⁵

The individual Be-N bond lengths are 1.598(8), 1.584(8), 1.607(8), 1.576(8), 1.587(8), and 1.600(8) Å. These values are similar to those found in the two-co-ordinate bis(trimethylsilylamino)beryllium [1.566(17) Å]⁶ and to the terminal Be-N distances [1.573(11) Å]7 found in the trimeric bis(dimethylamino)beryllium, and are thus consistent with dative $p_{\pi}-p_{\pi}$ Be \leftarrow N bonding. All lengths quoted are considerably shorter than those found for a Be-N single bond [1.76(1) Å] in the trimer⁷ in which both atoms are in polymeric tetrahedral environments. It has been suggested that π bonding (Be \leftarrow N) only occurs when valence saturation of the beryllium atom through polymerisation is impossible: as, for example, in the sterically crowded molecules mentioned in refs. 6 and 7. This is not true for the present anion as an alternative polymeric tetrahedral structure would be sterically stable.

(Received, 20th June 1972; Com. 1076.)

